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Abstract Using a polarization method, the scattering problem for a two-dimensional
inclusion embedded in infinite piezoelectric/piezomagnetic matrices is investigated. To
achieve the purpose, the polarization method for a two-dimensional piezoelectric/piezo-
magnetic “comparison body” is formulated. For simple harmonic motion, kernel of the
polarization method reduces to a 2-D time-harmonic Green’s function, which is ob-
tained using the Radon transform. The expression is further simplified under condi-
tions of low frequency of the incident wave and small diameter of the inclusion. Some
analytical expressions are obtained. The analytical solutions for generalized piezoelec-
tric/piezomagnetic anisotropic composites are given followed by simplified results for
piezoelectric composites. Based on the latter results, two numerical results are provided
for an elliptical cylindrical inclusion in a PZT-5H-matrix, showing the effect of different
factors including size, shape, material properties, and piezoelectricity on the scattering
cross-section.
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Introduction

Wave scattering by inclusions embedded in composites has long been the subject of investi-
gation by many researchers. Pao[1] made a detailed discussion about diffraction of elastic waves
and its relationship with dynamic stress concentration. However, his discussion was limited to
isotropic materials. On the other hand, Auld’s work[2] about acoustic waves in solids did pay
some attention to wave propagation in general anisotropic materials. However, scattering was
not considered as a topic in the book. Barnett[3] pointed out that following the method first
introduced by Stroh[4], discussion of wave propagation in solids with general anisotropy could
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be treated in a quite simple fashion. Indeed, speaking of two-dimensional problems with general
anisotropy, whether for static or for dynamic problem, people would always prefer to try using
Stroh’s formalism, for its mathematic elegance and conciseness. Stroh’s method is successful in
finding the Rayleigh wave for half-space, which can be considered as the simplest form of scat-
tering. Wu[5] extended Stroh’s formalism to treat the so-called “self-similar” problem, which
was another success in treating dynamic problems.

However, except for the simplest case of the Rayleigh wave, Stroh’s formalism does not
give exercisable result for general simple harmonic motions: substitution of functions with the
form f(x1 +px2)eiwt into the dynamic equilibrium equation does not give simple eigenfunctions
anymore. On the other hand, the extended Stroh’s method formulated by Wu[5] can only treat
scattering problems caused by inhomogeneities with boundaries on x2 = 0. For a more general
two-dimensional scattering problem, until now, Stroh’s formalism cannot give satisfying results.
To sum up, up to now, no solution is available to the two-dimensional scattering problem caused
by simple harmonic waves colliding on an inhomogeneity with a rather general shape, let alone
the discussion in piezoelectric/piezomagnetic materials.

As the preferred Stroh’s method does not promise any satisfying results, the two-dimensional
scattering problem with inhomogeneities of arbitrary shape has been put into a rather embar-
rassing condition. Besides Stroh’s formalism, Willis[6] provided another effective approach–
polarization method to deal with the three-dimensional scattering problem, which was formu-
lated as integral equations of Green’s function. Ma and Wang[7] developed this method and
adopted several concepts introduced by the classical method of Eshelby[8] to treat the scattering
problem caused by an ellipsoidal inclusion in infinite anisotropic piezoelectric matrices.

In this paper, we combine Willis’ idea[6] with some other powerful analytical skills, such as
the Radon transform and the Residue theorem in complex methods, to treat two-dimensional
scattering problems in piezoelectric/piezomagnetic composites. Besides an integral solution for
the general problem, some exact analytical results are obtained for the first time under certain
simplification.

1 Basic equations

Using the extended Barnett and Lothe notation[9] and quoting Pan’s expression[10], the
equation of equilibrium for the coupled magneto-electro-elastic field of any media with general
anisotropy can be expressed as

CiJKluK,li + fJ = ρJK üK , (1)

where

CiJKl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cijkl , J, K = 1, 2, 3;
elij , J = 1, 2, 3, K = 4;
eikl, J = 4, K = 1, 2, 3;
qlij , J = 1, 2, 3, K = 5;
qikl, J = 5, K = 1, 2, 3;
−λil, J = 4, K = 5 or J = 5, K = 4;
−εil, J, K = 4;
−μil, J, K = 5;

(2)

and

uJ =

⎧⎪⎨
⎪⎩

uj , J = 1, 2, 3;
φ, J = 4;
ϕ, J = 5;

fJ =

⎧⎪⎨
⎪⎩

fj , J = 1, 2, 3;
−fe, J = 4;
−fm, J = 5;

ρJK =

{
δJKρ, J, K = 1, 2, 3;
0, other cases.

(3)
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Cijkl , εij and μij are the elastic, dielectric, and magnetic permeability tensors, respectively.
eijk, qijk and λij are the piezoelectric, piezomagnetic, and magnetoelectric coefficients, respec-
tively. uj , φ and ϕ are the elastic displacement, electric potential, and magnetic potential,
respectively. fj , fe and fm are the body force, electric charge, and electric current (or called the
magnetic charge as compared to the electric charge), respectively. δJK denotes the Kronecher
tensor and ρ is the density. üJ indicates the second-order derivative of uJ with respect to
time. The extended elastic coefficient tensor CiJKl in Eq. (1) relates the extended strains to
the extended stresses by the constitutive relationship,

σiJ = CiJKlγKl, (4)

where the extended stresses and strains are defined by

σiJ =

⎧⎪⎨
⎪⎩

σij , J = 1, 2, 3;
Di, J = 4;
Bi, J = 5;

γIj =

⎧⎪⎨
⎪⎩

γij , I = 1, 2, 3;
−Ej , I = 4;
−Kj, I = 5.

(5)

In Eq. (5), σij , Di and Bi are the stress, electric displacement, and magnetic induction (i.e.,
magnetic flux), respectively; γij , Ej and Kj are the strain, electric field and magnetic field,
respectively. It is observed that various uncoupled cases (i.e., purely elasticity, piezoelectricity,
and piezomagneticity) can be reduced from Eqs. (1)–(5) by setting the appropriate coefficients
to zero. It is further noticed that the following symmetry relationship holds:⎧⎪⎨

⎪⎩
Cijkl = Cjikl = Cklij ,

ekji = ekij , qkji = qkij ,

εij = εji, λij = λji, μij = μji.

(6)

Finally, the extended strains and displacements are related by the geometric equation,⎧⎨
⎩ γij =

1
2
(ui,j + uj,i),

Ei = −φ,i, Hi = −ϕ,i.
(7)

2 Two-dimensional polarization method for composites

Consider an infinite piezoelectric/piezomagnetic body composed of matrices with generalized
elastic moduli C0

iJKl and density ρ0
JK and a two-dimensional inclusion (e.g., cylinder with

infinite length) embedded in matrices occupying Ω with generalized elastic moduli CI
iJKl and

density ρI
JK . Set the coordinate so that the x3-axis coincides with the length of the inclusion.

Equation (1) becomes

(C0
iJKluK,l),i + fJ + τiJ,i − π̇J = ρ0

JK üK , (8)

where

τiJ = ΔCiJKluK,l, πJ = ΔρJK u̇K , (9)

ΔCiJKl = (CI
iJKl − C0

iJKl)H(x), ΔρJK = (ρI
JK − ρ0

JK)H(x), (10)

and

H(x) =

{
1, x ∈ Ω,

0, x �∈ Ω.
(11)
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In Eqs. (8)–(11) and derivation in Section 2, x = (x1, x2), and the capital subscripts (e.g., J, K)
run from 1 to 5, the lowercase subscripts (e.g., i, l) run from 1 to 2.

Now consider a “comparison body”, which is homogeneous and takes the material of the
matrices. The equilibrium equation of this body is

(C0
iJKluK,l),i + fJ = ρ0

JK üK . (12)

The adjoint problem of Eq. (12), corresponding to the adjoint operators C∗
iJKl and ρ∗JK , is

governed by the following equations:

(C∗
lKJivJ,i),l + FK = ρ∗KJ v̈J , (13)

where FK is the extended body force of the adjoint problem for the field v. The adjoint
operators are defined by∫ ∞

0

∫
S

(vJ,iC
0
iJKluK,l − uK,lC

∗
lKJivJ,i)dSdt = 0, (14)∫ ∞

0

∫
S

(v̇Jρ0
JK u̇K − u̇Kρ∗KJ v̇J )dSdt = 0. (15)

By use of Gauss’s theorem, Eqs. (12)–(15) lead to the identity,∫ ∞

0

∫
∂S

[vJC0
iJKluK,lni − uKC∗

lKJivJ,inl]dλdt +
∫ ∞

0

∫
S

(vJFJ + uKFK)dSdt

=
∫

S

(vJρ0
JK u̇K − uKρ∗KJ v̇J)|∞t=0dS. (16)

Green’s function G and its components for the comparison body satisfy

(C0
iJKlGKP,l),i + δJP δ(x − x′)δ(t − t′) = ρ0

JKG̈KP , (17)

with homogeneous initial and boundary conditions. The two indexes of GKP (x − x′, t − t′)
denote the component of the extended Green’s displacement and the direction of the extended
point force. And let G∗ be the adjoint Green’s function, whose components follow

(C∗
lKJiG

∗
JQ,i),l + δKQδ(x − x′′)δ(t − t′′) = ρ∗KJ G̈∗

JQ (18)

with the corresponding adjoint boundary conditions. According to Eq. (16), we have

G∗
QP (x′ − x′′, t′ − t′′) = GPQ(x′′ − x′, t′′ − t′). (19)

Equation (19) shows that the adjoint Green’s function G∗ may be obtained directly from
G, which is more convenient for derivation. Application of Eq. (16) to Eq. (8) yields

uQ(x′′, t′′) = −
∫ ∫

S

[G∗
JQ,i(x

′′ − x, t′′ − t)τiJ (x, t) − Ġ∗
JQ(x′′ − x, t′′ − t)πJ ]dSdt + u0

Q(x′′, t′′),

(20)

in which

u0
Q(x′′, t′′) = −

∫ ∫
S

[G∗
JQ(x′′ − x, t′′ − t)fJ(x, t)]dSdt

−
∫ ∫

∂S

[uKC∗
lKJiG

∗
JQ,inl − G∗

JQ(C0
iJKluK,l + πiJ )ni]dλdt

+
∫

S

{G∗
JQ(x′′ − x, t′′)[ρ0

JKuK,l(x, 0) + πJ (x, 0)]

− uK(x, 0)ρ∗KJG∗
JQ(x′′ − x, t′′)}dS. (21)
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It should be emphasized that Eq. (20) is valid only when momentum rather than velocity
is given as the initial condition. Comparing Eqs. (20) and (21) with Willis’s results[6] for
the inhomogeneous anisotropic case, it follows that the present solution can be reduced to
the piezoelectric, piezomagnetic, or pure elastic case when the corresponding moduli vanish.
Symbolically, there is

u = −Nτ − Mπ + u0, (22)

where

(Nτ)Q(x, t) =
∫ ∫

S

NQiJ(x − x′, t − t′)τiJ (x′, t′)dS′dt′, (23)

(Mπ)Q(x, t) =
∫ ∫

S

MQJ(x − x′, t − t′)πJ (x′, t′)dS′dt′, (24)

and

NQiJ (x − x′, t − t′) =
∂G∗

JQ(x′ − x, t′ − t)
∂x′

i

=
∂GQJ(x − x′, t − t′)

∂x′
i

, (25)

MQJ(x − x′, t − t′) = −∂G∗
JQ(x′ − x, t′ − t)

∂t′
=

∂GQJ(x − x′, t − t′)
∂t′

. (26)

Substitution of Eq. (22) into Eq. (9) gives

(ΔC)−1
iJQlτiJ + (Nxτ)Ql + (Mxπ)Ql = u0

Q,l, (27)

(Δρ)−1
JQπJ + (Ntτ)Q + (Mtπ)Q = u̇0

Q, (28)

where

(Nx)QliJ =
∂2GQJ

∂xl∂x′
i

, (Mx)QlJ =
∂2GQJ

∂xl∂t′
, (29)

(Nt)QiJ =
∂2GQJ

∂t∂x′
i

, (Mt)QJ =
∂2GQJ

∂t∂t′
. (30)

Consider a two-dimensional incident wave taking place in the body, whose expression is
given by

u0 = a exp{−i[k0(n0 · x) + wt]}, (31)

where n0 = [n1, n2]T is a unit vector. The polarization a and the wave number k0 satisfy[
Qn2

1 − ρ
w2

k2
0

+ (R + RT)n1n2 + Tn2
2

]
a = 0, (32)

where the superscript T stands for matrix transpose, and Q, R, T are defined respectively as

Q = [C1JK1], R = [C1JK2], T = [C2JK2], (33)

and ρ is defined as

ρ =

⎡
⎢⎢⎢⎢⎣

ρ 0 0 0 0
0 ρ 0 0 0
0 0 ρ 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ . (34)

When such a problem is considered, the scattered wave caused by the inclusion will depend
on time t through a factor exp(−iwt). Correspondingly, time-reduced versions of operators N
and M are required. They are, on the other hand, obtained from the two-dimensional time-
reduced Green’s function for dynamics.
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3 Two-dimensional time-harmonic Green’s function for dynamics

The two-dimensional time-harmonic dynamic Green’s function for piezoelectric/piezomagnetic
solids with general anisotropy is first obtained in this section. First, let a generalized time-
harmonic line force apply along the x3-axis in the xQ-direction, and time t = −∞. We get

fK(x, t) = δKQδ(x)e−iwt, (35)

where x is in plane (x1, x2). It follows that the generalized displacements in the solids are also
time-harmonic, which can be written as

uQ(x, t) = GQJ(x)e−iwt. (36)

Substitution of Eqs. (35) and (36) into Eq. (1) yields

(LJK(∂) + ρJKw2)GQJ = −δQKδ(x), (37)

where

LJK(∂) = C1JK1
∂2

∂x2
1

+ (C1JK2 + C2JK1)
∂2

∂x1∂x2
+ C2JK2

∂2

∂x2
2

. (38)

From Eq. (37), it is obvious that the well-known Stroh formalism cannot be applied to this
problem. If we apply GQJ = GQJ (x1+px2) to Eq. (37), we find that the equation is difficult and
does not promise a solution. It turns out that because of the existence of the term ρJKw2GQJ ,
the eigenvalue equation in Stroh’s formalism is no longer available. We have to find another
method to deal with the problem. An application of the two-dimensional Radon transform
defined by Eq. (A1) to both sides of Eq. (37) gives

(LJK(n)
∂2

∂s2
+ ρJKw2)ĜQJ (s) = −δQKδ(s), (39)

where

LJK(n) = C1JK1n
2
1 + (C1JK2 + C2JK1)n1n2 + C2JK2n

2
2. (40)

According to Eq. (6), LJK = LKJ . In Eq. (39), the density tensor can be expended as

[ρJK ] =

⎡
⎢⎢⎢⎢⎣
ρ 0 0 0 0
0 ρ 0 0 0
0 0 ρ 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ . (41)

Equation (39) can be decomposed as follows:

(
Ljk(n)

∂2

∂s2
+ ρδjkw2

)
Ĝqj(s) + L4k(n)

∂2Ĝq4(s)
∂s2

+ L5k(n)
∂2Ĝq5(s)

∂s2
= −δqkδ(s), (42)

where most of the results are omitted here. These equations are of the similar form with Eq. (42)
and too lengthy to be presented here. In Eq. (42) and later discussion, the lowercase subscripts
(e.g. j, k) run from 1 to 3. We also have equations with the following form:

∂2Ĝq4

∂s2
= (L−1

55 L45 − L−1
54 L44)−1(L−1

54 Lj4 − L−1
55 Lj5)

∂2Ĝqj

∂s2
. (43)



Solution of two-dimensional scattering problem in piezoelectric/piezomagnetic media 1541

Substitution of Eq. (43) to Eq. (42) yields

(
Γjk(n)

∂2

∂s2
+ ρδjkw2

)
Ĝqj(s) = −δqkδ(s), (44)(

Γjk(n)
∂2

∂s2
+ ρδjkw2

)
Ĝ4j(s) = −(L2

45 − L55L44)−1(L55L4k − L45L5k)δ(s), (45)(
Γjk(n)

∂2

∂s2
+ ρδjkw2

)
Ĝ5j(s) = −(L2

45 − L55L44)−1(L44L5k − L45L4k)δ(s), (46)

in which

Γjk(n) = Ljk + (L45L54 − L44L55)−1[Lj4L55L4k − L54(Lj5L4k + Lj4L5k) + Lj5L44L5k]. (47)

Comparing the right side of Eqs. (45) and (46) with Eqs. (44) and (43) and noticing that
LJK = LKJ , we have

ĜJQ = ĜQJ . (48)

Therefore, Eqs. (45) and (46) will not be mentioned in the later discussion. We will solve Ĝ4j(s)
and Ĝ5j(s) by Eq. (43) instead.

It is shown from Eq. (47) that the matrix Γ = [Γjk(n)] is symmetric and positive. By
transforming the coordinates to the bases of the eigenspaces of Γ, Eq. (44) can be reduced to a
system of uncoupled 1-D Helmholtz equations. The eigenfunctions are given by

ΓjkEkm = λmEjm, m = 1, 2, 3, (49)

where λm is the eigenvalue corresponding to the eigenvector Em = [E1m, E2m, E3m]T of Γ. It
is worth mentioning that the summation convention does not and will not apply to the suffix
m. It is easily proved that both the eigenvalues and eigenvectors are real. And here we take
the eigenvectors as orthonormal bases, which gives

Em · En = δmn. (50)

The transformation of Eq. (44) is given by

(
λm

∂2

∂s2
+ ρw2

)
G̃qm(s) = −Eqmδ(s), (51)

where

G̃qm(s) = EjmĜqj , (52)

and

Ĝqj(s) = EnjG̃qn. (53)

The solution of Eq. (51) was first obtained by Wang and Achenbach[11]:

G̃qm =
iEqm

2ρc2
mkm

eikm|s|, (54)

where the phase velocity cm and the wave number km are defined respectively by

cm =
√

λm/ρ, km = w/cm. (55)
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From Eq. (53), we have

Ĝqj =
3∑

m=1

iEqmEjm

2ρc2
mkm

eikm|s|. (56)

The inverse transform of (54) is obtained by substituting Eq. (56) into Eq. (A2),

Gqj(x) =
1

4π2

3∑
m=1

∮
|n|=1

EqmEjm

2ρc2
m

∫ ∞

−∞
sgn(n · x + τ)

eikm|n·x+τ |

τ
dτdl(n). (57a)

The same process of the derivation of Gqj is repeated to obtain Gq4, Gq5, G44, G45 and G55,
which gives

Gq4(x) =
1

4π2

3∑
m=1

∮
|n|=1

EqmEjm(L−1
54 Lj4 − L−1

55 Lj5)
2ρc2

m(L−1
55 L45 − L−1

54 L44)

∫ ∞

−∞
sgn(n · x + τ)

eikm|n·x+τ |

τ
dτdl(n),

(57b)

Gq5(x) =
1

4π2

3∑
m=1

∮
|n|=1

EqmEjm(L−1
44 Lj4 − L−1

45 Lj5)
2ρc2

m(L−1
45 L55 − L−1

44 L54)

∫ ∞

−∞
sgn(n · x + τ)

eikm|n·x+τ |

τ
dτdl(n),

(57c)

G44(x) =
1

4π2

{ 3∑
m=1

∮
|n|=1

[ (L−1
54 L4q − L−1

55 L5q)EqmEjm(L−1
54 Lj4 − L−1

55 Lj5)
2ρc2

m(L−1
55 L45 − L−1

54 L44)2

∫ ∞

−∞
sgn(n · x+τ)

· eikm|n·x+τ |

τ
dτ

]
dl(n) −

∮
|n|=1

∫ ∞

−∞

sgn(τ + n · x)
2τ(L−1

55 L45 − L−1
54 L44)L54

dτdl(n)
}

, (57d)

G45(x) =
1

4π2

{ 3∑
m=1

∮
|n|=1

[ (L−1
44 L4q − L−1

45 L5q)EqmEjm(L−1
54 Lj4 − L−1

55 Lj5)
2ρc2

m(L−1
55 L45 − L−1

54 L44)(L−1
45 L55 − L−1

44 L54)

∫ ∞

−∞
sgn(n · x+τ)

· eikm|n·x+τ |

τ
dτ

]
dl(n) −

∮
|n|=1

∫ ∞

−∞

sgn(τ + n · x)
2τ(L−1

45 L55 − L−1
44 L54)L44

dτdl(n)
}

, (57e)

G55(x) =
1

4π2

{ 3∑
m=1

∮
|n|=1

[ (L−1
44 L4q − L−1

45 L5q)EqmEjm(L−1
44 Lj4 − L−1

45 Lj5)
2ρc2

m(L−1
45 L55 − L−1

44 L54)2

∫ ∞

−∞
sgn(n · x+τ)

· eikm|n·x+τ |

τ
dτ

]
dl(n) −

∮
|n|=1

∫ ∞

−∞

sgn(τ + n · x)
2τ(L−1

44 L54 − L−1
45 L55)L45

dτdl(n)
}

. (57f)

Equations (57a)–(57f) are inserted into Eqs. (25), (26), (29) and (30) to get the corresponding
operators,

Nijq(x, t) = − 1
4π2

3∑
m=1

∮
|n|=1

EqmEjmni

2ρc2
m

∫ ∞

−∞

(2δ(n · x + τ)
τ

+
ikmeikm|n·x+τ |

τ

)
dτdl(n)

= − 1
4π2

3∑
m=1

∮
|n|=1

EqmEjmni

2ρc2
m

( ∫ ∞

−∞

ikmeikm|n·x+τ |

τ
dτ − 2

n · x
)
dl(n), (58a)
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Ni4q(x, t) = − 1
4π2

3∑
m=1

∮
|n|=1

EqmEjmni(L−1
54 Lj4 − L−1

55 Lj5)
2ρc2

m(L−1
55 L45 − L−1

54 L44)

·
(∫ ∞

−∞

ikmeikm|n·x+τ |

τ
dτ − 2

n · x
)
dl(n), (58b)

Ni44(x, t) = − 1
4π2

{ 3∑
m=1

∮
|n|=1

[ (L−1
54 L4q − L−1

55 L5q)EqmEjmni(L−1
54 Lj4 − L−1

55 Lj5)
2ρc2

m(L−1
55 L45 − L−1

54 L44)2

·
(
− 2

n · x +
∫ ∞

−∞

ikmeikm|n·x+τ |

τ
dτ

)]
dl(n)

−
∮
|n|=1

ni

n · x(L−1
55 L45 − L−1

54 L44)L54

dl(n)
}

, (58c)

Ni54(x, t) = − 1
4π2

{ 3∑
m=1

∮
|n|=1

[ (L−1
44 L4q − L−1

45 L5q)EqmEjmni(L−1
54 Lj4 − L−1

55 Lj5)
2ρc2

m(L−1
55 L45 − L−1

54 L44)(L−1
45 L55 − L−1

44 L54)

·
(
− 2

n · x +
∫ ∞

−∞

ikmeikm|n·x+τ |

τ
dτ

)]
dl(n)

−
∮
|n|=1

ni

n · x(L−1
45 L55 − L−1

44 L54)L44

dl(n)
}

, (58d)

(Nx)ijql =
1

4π2

3∑
m=1

∮
|n|=1

EqmEjmninl

2ρc2
m

[ ∫ ∞

−∞

k2
msgn(n · x + τ)eikm|n·x+τ |

τ
dτ − 2

(n · x)2
]
dl(n),

(59a)

(Nx)i4ql =
1

4π2

3∑
m=1

∮
|n|=1

EqmEjmninl(L−1
54 Lj4 − L−1

55 Lj5)
2ρc2

m(L−1
55 L45 − L−1

54 L44)

·
[ ∫ ∞

−∞

k2
msgn(n · x + τ)eikm|n·x+τ |

τ
dτ − 2

(n · x)2
]
dl(n), (59b)

(Nx)i44l =
1

4π2

{ 3∑
m=1

∮
|n|=1

(L−1
54 L4q − L−1

55 L5q)EqmEjmninj(L−1
54 Lj4 − L−1

55 Lj5)
2ρc2

m(L−1
55 L45 − L−1

54 L44)2

·
[ ∫ ∞

−∞

k2
msgn(n · x + τ)eikm|n·x+τ |

τ
dτ − 2

(n · x)2
]
dl(n)

−
∮
|n=1|

ninj

(n · x)2(L−1
55 L45 − L−1

54 L44)L54

dl(n)
}

, (59c)

(Nx)i54l =
1

4π2

{ 3∑
m=1

∮
|n|=1

(L−1
44 L4q − L−1

45 L5q)EqmEjmninl(L−1
54 Lj4 − L−1

55 Lj5)
2ρc2

m(L−1
55 L45 − L−1

54 L44)(L−1
45 L55 − L−1

44 L54)

·
[ ∫ ∞

−∞

k2
msgn(n · x + τ)eikm|n·x+τ |

τ
dτ − 2

(n · x)2
]
dl(n)

−
∮
|n=1|

ninl

(n · x)2(L−1
45 L55 − L−1

44 L54)L44

dl(n)
}

, (59d)
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and

MQJ (x) = −iwGQJ (x), (59e)

(Mx)JQl = iwNJQl, (59f)

(Nt)iJQ = −iwNiJQ, (59g)

(Mt)JQ = −iwMJQ. (59h)

It should be noted that in Eqs. (58a)–(59h), i = 1, 2 and l = 1, 2 for a two-dimensional
problem, which distinct themselves from other lowercase subscripts that take values from 1
to 3. This rule also applies to later discussion. The missing equations in Eqs. (58a)–(59h) can
be obtained by switching corresponding subscripts. The lengthy expressions in Eqs. (58a)–
(59h) can be treated numerically. Take Eq. (59d) as an example: for the first term with kernel∫ ∞
−∞{[k2

msgn(n ·x+τ)eikm|n·x+τ |]/τ}dτ, we can separate the integration into two parts to elim-

inate sgn(n · x + τ), and then we get expressions with kernel
∫ −n·x
−∞ (eikmτ/τ)dτ, which can be

solved by series expansion. The second and third terms of Eq. (59d) will be solved in Section 5.
Combination of Eqs. (58a)–(59h) and Eqs. (27)–(28) yields the generalized displacement de-
scribed by Eq. (22). From Eq. (22), we learn that the total displacement field is composed of
the incident field u0 and the scattered field v, which is given by

v = −Nτ − Mπ. (60)

For piezoelectric materials, Eqs. (57a)–(59h) reduce to

Gqj(x) =
1

4π2

3∑
m=1

∮
|n|=1

EqmEjm

2ρc2
m

∫ ∞

−∞
sgn(n · x + τ)

eikm|n·x+τ |

τ
dτdl(n), (61a)

Gq4(x) = − 1
4π2

3∑
m=1

∮
|n|=1

EqmEjmLj4

2ρc2
mL44

∫ ∞

−∞
sgn(n · x + τ)

eikm|n·x+τ |

τ
dτdl(n), (61b)

G44(x) =
1

4π2

{ 3∑
m=1

∮
|n|=1

[L4qEqmEjmLj4

2ρc2
mL2

44

∫ ∞

−∞
sgn(n · x + τ)

eikm|n·x+τ |

τ
dτ

]
dl(n)

−
∮
|n|=1

∫ ∞

−∞

sgn(τ + n · x)
2τL44

dτdl(n)
}

, (61c)

Nijq(x, t) = − 1
4π2

3∑
m=1

∮
|n|=1

EqmEjmni

2ρc2
m

(∫ ∞

−∞

ikmeikm|n·x+τ |

τ
dτ − 2

n · x
)
dl(n), (61d)

Ni4q(x, t) =
1

4π2

3∑
m=1

∮
|n|=1

EqmEjmniLj4

2ρc2
mL44

(∫ ∞

−∞

ikmeikm|n·x+τ |

τ
dτ − 2

n · x
)
dl(n), (61e)

Ni44(x, t) = − 1
4π2

{ 3∑
m=1

∮
|n|=1

[L4qEqmEjmniLj4

2ρc2
mL2

44

(
− 2

n · x +
∫ ∞

−∞

ikmeikm|n·x+τ |

τ
dτ

)]
dl(n)

+
∮
|n|=1

ni

L44n · xdl(n)
}

, (61f)
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and

(Nx)ijql =
1

4π2

3∑
m=1

∮
|n|=1

EqmEjmninl

2ρc2
m

[ ∫ ∞

−∞

k2
msgn(n · x + τ)eikm|n·x+τ |

τ
dτ − 2

(n · x)2
]
dl(n),

(62a)

(Nx)i4ql = − 1
4π2

3∑
m=1

∮
|n|=1

EqmEjmninlLj4

2ρc2
mL44

[ ∫ ∞

−∞

k2
msgn(n · x + τ)eikm|n·x+τ |

τ
dτ

− 2
(n · x)2

]
dl(n), (62b)

(Nx)i44l =
1

4π2

{ 3∑
m=1

∮
|n|=1

L4qEqmEjmninjLj4

2ρc2
mL44

[ ∫ ∞

−∞

k2
msgn(n · x + τ)eikm|n·x+τ |

τ
dτ

− 2
(n · x)2

]
dl(n) +

∮
|n|=1

ninj

(n · x)2L44
dl(n)

}
. (62c)

For the reduced material, Eq. (47) becomes

Γjk(n) = Ljk + L−1
44 Lj4L4k. (63)

It should be noticed that for the reduced material, terms corresponding to the magnetic
properties in Eq. (2) are omitted. It is obvious that if we exchange the related terms, Eqs. (61a)–
(61f) can also apply to piezomagnetic materials.

4 Scattering cross-section

The scattering cross-section κ of inclusion is defined as the ratio of the total mean rate of
energy outflow corresponding to the scattered field v to the mean energy flow of the incident
wave in direction n0. The mean energy flux of v has components

Yi = −1
4
iw(σiJ v̄J − σ̄iJvJ ), (64)

where σiJ is the generalized stress field associated with v, and the superposed bar denotes
complex conjugation. The mean rate of energy radiation out of a two-dimensional domain is
then obtained as

E =
∫

∂S

Yin
0
i dl. (65)

Using Gauss’ theorem, we get

E = −1
4
iw

∫
S

(σiJ,iv̄J − σ̄iJ,ivJ + σiJ v̄J,i − σ̄iJvJ,i)dS, (66)

which can be transformed into

E = −1
4
iw

∫
S

(τiJ v̄J,i − τ̄iJvJ,i)dS − 1
4
w2

∫
S

(πJ v̄J + π̄JvJ )dS. (67)

In the above equation, τ and π are non-zero only over the plane S occupied by the inclusion.
The mean energy flux of the incident wave can be obtained from Eq. (32) as

E0 =
ρw3

2k0
ajaj , (68)
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where aj are the components of the polarization vector a given by Eq. (31). Finally, we obtain
the expression of the scattering cross-section,

κ = E/E0. (69)

5 Analytical results under certain simplification

Equations (27) and (28) can be simplified considerably in the low frequency range, or the
so-called Rayleigh limit. Moreover, if the diameter of the inclusion is much smaller than the
wavelength of the incident wave, τ and π can be considered as constants over the inclusion.
Retention of the lowest terms reduces the equations to

(ΔC)−1
iJQlτiJ +

∫
S

(N∞
x )iJQldx′τiJ = −ik0aQn0

l , (70)

(Δρ)−1πj = −iwaj . (71)

The integral in Eq. (70) is the static limit of operator Nx, which can be treated as follows:∫
S

(N∞
x )iJQldx′ =

d[
∫

S
N∞

iJQ(x − x′)dx′]
dxl

, (72)

where N∞
iJQ can be obtained from Eqs. (58a)–(58f) by merely retaining the terms with 1

n·x .
Equation (72) can be solved explicitly, whose result is a constant tensor given in Appendix B.
In Eqs. (70)–(71), τ and π are directly solved as

τiJ = −ik0[(ΔC)−1 +
∫

S

(N∞
x )dx′]−1

iJQlaQn0
l , (73)

πj = −i(Δρ)waj . (74)

The scattering cross-section is evaluated for this simplified case. From Eqs. (67)–(69), we get

κ =
(πab)2w3

2E0
[τiJ (ΔNx)iJQlτ̄lQ + πkΔMkpπ̄p], (75)

where

(ΔNx)ijql =
1

4π2

3∑
m=1

∮
|n|=1

EqmEmjninl

ρc5
m

[ ∞∑
i=0

(−1)i 1
(2i + 1)(2i + 1)!

− 1
2

]
dl(n), (76a)

(ΔNx)i4ql =
1

4π2

3∑
m=1

∮
|n|=1

EqmEmjninl(L−1
54 Lj4 − L−1

55 Lj5)
ρc5

m(L−1
55 L45 − L−1

54 L44)

·
[ ∞∑

i=0

(−1)i 1
(2i + 1)(2i + 1)!

− 1
2

]
dl(n), (76b)

(ΔNx)i5ql =
1

4π2

3∑
m=1

∮
|n|=1

EqmEmjninl(L−1
44 Lj4 − L−1

45 Lj5)
ρc5

m(L−1
45 L55 − L−1

44 L54)

·
[ ∞∑

i=0

(−1)i 1
(2i + 1)(2i + 1)!

− 1
2

]
dl(n), (76c)

(ΔNx)i44l =
1

4π2

3∑
m=1

∮
|n|=1

(L−1
54 L4q − L−1

55 L5q)EqmEmjninj(L−1
54 Lj4 − L−1

55 Lj5)
ρc5

m(L−1
55 L45 − L−1

54 L44)2

·
[ ∞∑

i=0

(−1)i 1
(2i + 1)(2i + 1)!

− 1
2

]
dl(n), (76d)



Solution of two-dimensional scattering problem in piezoelectric/piezomagnetic media 1547

(ΔNx)i54l =
1

4π2

3∑
m=1

∮
|n|=1

(L−1
44 L4q − L−1

45 L5q)EqmEmjninl(L−1
54 Lj4 − L−1

55 Lj5)
ρc5

m(L−1
55 L45 − L−1

54 L44)(L−1
45 L55 − L−1

44 L54)

·
[ ∞∑

i=0

(−1)i 1
(2i + 1)(2i + 1)!

− 1
2

]
dl(n), (76e)

(ΔNx)i55l =
1

4π2

3∑
m=1

∮
|n|=1

(L−1
54 L4q − L−1

55 L5q)EqmEmjninj(L−1
54 Lj4 − L−1

55 Lj5)
2ρc5

m(L−1
55 L45 − L−1

54 L44)2

·
[ ∞∑

i=0

(−1)i 1
(2i + 1)(2i + 1)!

− 1
2

]
dl(n), (76f)

ΔMkp =
1

4π2

3∑
m=1

∮
|n|=1

EqmEmj

ρc3
m

[ ∞∑
i=0

(−1)i 1
(2i + 1)(2i + 1)!

− 1
2

]
dl(n). (76g)

In the derivation of Eq. (75), the parities of Eqs. (58a)–(59j) are used. The detailed deduction
of Eqs. (76a)–(76g) are given in Appendix C.

For general piezoelectric materials, Eqs. (76a)–(76g) reduce to

(ΔNx)ijql =
1

4π2

3∑
m=1

∮
|n|=1

EqmEmjninl

ρc5
m

[ ∞∑
i=0

(−1)i 1
(2i + 1)(2i + 1)!

− 1
2

]
dl(n), (77a)

(ΔNx)i4ql = − 1
4π2

3∑
m=1

∮
|n|=1

EqmEmjninlLj4

ρc5
mL44

[ ∞∑
i=0

(−1)i 1
(2i + 1)(2i + 1)!

− 1
2

]
dl(n), (77b)

(ΔNx)i44l =
1

4π2

3∑
m=1

∮
|n|=1

L4qEqmEmjninjLj4

ρc5
mL2

44

[ ∞∑
i=0

(−1)i 1
(2i + 1)(2i + 1)!

− 1
2

]
dl(n), (77c)

ΔMjp =
1

4π2

3∑
m=1

∮
|n|=1

EqmEmj

ρc3
m

[ ∞∑
i=0

(−1)i 1
(2i + 1)(2i + 1)!

− 1
2

]
dl(n). (77d)

6 Numerical examples

In this section, the scattering cross-section is calculated for the piezoelectric composite,
which consists of a single inclusion (with two types of different material constants: BaTiO3

and BaTiO3 rigidity) and a PZT-5H-matrix. The matrix and the inclusion are transversely
isotropic piezoelectric material with the symmetry axis x2, and the two-dimensional problem
is calculated in the x1-x2 plane. (Notice that the symmetry axis is set in the x2-direction. So
the material is not symmetric in x1- and x2-directions.) The non-zero elements of material
constants are the BaTiO3-inclusion:

⎧⎪⎨
⎪⎩

C∗
11 = 166 GPa, C∗

22 = 162 GPa, C∗
12 = 78 GPa, C∗

13 = 77 GPa, C∗
44 = 43 GPa,

e∗21 = −4.4 C · m−2, e∗22 = 18.6 C · m−2, e∗15 = 11.6 C · m−2,

ε∗11 = 11.2 × 10−9 C · N−1 · m−2, ε∗22 = 12.6 × 10−9 C · N−1 · m−2, ρ∗ = 5 700 kg · m−3;
(78)
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and the PZT-5H-matrix:⎧⎪⎨
⎪⎩

C11 = 126 GPa, C22 = 117 GPa, C12 = 53 GPa, C13 = 55 GPa, C44 = 35.5 GPa,

e21 = −6.5 C · m−2, e22 = 23.3 C · m−2, e15 = 17.0 C · m−2,

ε11 = 15.1 × 10−9 C · N−1 · m−2, ε22 = 13.0 × 10−9 C · N−1 · m−2, ρ = 7 500 kg · m−3.

(79)

And for the BaTiO3 rigidity inclusion, the constants of the material are set to be infinite,
but the density of the material remains the same.

The generalized stress-strain relationship in this case is given by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ23

σ13

σ12

D1

D2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 0 0 0 0 e21

C12 C22 0 0 0 0 e22

0 0 C44 0 0 0 0
0 0 0 1

2 (C11 − C13) 0 0 0
0 0 0 0 C44 e15 0
0 0 0 0 e15 −ε11 0

e21 e22 0 0 0 0 −ε22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ11

γ22

γ23

γ13

γ12

−E1

−E2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (80)

We consider the following problem: where the incident wave propagating in the x1-direction
in matrix, with the magnitude of displacement a = [1 0 0]T, collides on the elliptical inclusion.
The size of the inclusion is illustrated in Fig. 1. For two different types of materials of the
inclusion, we calculate the scattering cross-section as a function of ε. As ε increases, the
volume of the inclusion also increases linearly. The results are illustrated in Fig. 2. All results
are normalized with respect to w4a4, where a is the length shown in Fig. 1, and w is given by
Eq. (31).

Wave front

Inclusion

Matrix

Incident wave
O a x1

x2

εaθ

Fig. 1 Illustration of the scattering problem
considered

0 5 10 15 20 25 30
0
1
2
3
4
5
6
7
8
9

Piezoelectric inclusion
Piezoelectric rigidity

×10−12

κ

ε

Fig. 2 Scattering cross-section κ as a func-
tion of ε

From the upper result, we see that in both cases (BaTiO3 inclusion and BaTiO3 rigidity
inclusion), the size effect predominates. Because the scattering cross-section is an integration
over the area occupied by the whole inclusion, when the size of the inclusion increases with ε,
the value of the scattering cross-section will also increase. However, because the dependence of
the values of the scattering cross-section on the size of the inclusion is too strong, it actually
conceals the effect of the shape of the inclusion. To see this clearly, we make another calculation
of the scattering cross-section change as a function of θ, which is shown in Fig. 1. It is worth
mentioning that in this calculation, the size of the inclusion is kept invariant as θ changes. To
compare piezoelectric materials with normal elastic materials, we first calculate the scattering
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cross-section for matrices and the inclusion without piezoelectricity, yet having the same elastic
properties with the PZT-5H matrices and the BaTiO3 inclusion (we call them the elastic BaTiO3

and the elastic PZT-5H), whose nonzero material constants are given by the elastic BaTiO3-
inclusion:⎧⎪⎨

⎪⎩
C∗

11 = 166 GPa, C∗
22 = 162 GPa, C∗

12 = 78 GPa, C∗
13 = 77 GPa, C∗

44 = 43 GPa,

e∗21 = 0 C · m−2, e∗22 = 0 C · m−2, e∗15 = 0 C · m−2, ε∗11 = 0 C · N−2 · m−2,

ε∗22 = 0 C · N−2 · m−2, ρ∗ = 5 700 kg · m−3;

and the elastic PZT-5H-matrix:⎧⎪⎨
⎪⎩

C11 = 126 GPa, C22 = 117 GPa, C12 = 53 GPa, C13 = 55 GPa, C44 = 35.5 GPa,

e21 = 0 C · m−2, e22 = 0 C · m−2, e15 = 0 C · m−2, ε11 = 0 C · N−2 · m−2,

ε22 = 0 C · N−2 · m−2, ρ = 7 500 kg · m−3.

The BaTiO3 rigidity inclusion is also considered in this case. The results are illustrated in
Figs. 3 and 4.

The results for the piezoelectric matrices and inclusion are illustrated in Figs. 5 and 6, with
parameters in Eqs. (78) and (79).

0 10 20 30 40 50 60 70 80 90
7.0
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7.4
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8.0

8.2

Inclusion

κ

θ

×10−16

Fig. 3 Scattering cross-section κ as a function
of θ, the materials of matrices and in-
clusion in this case are elastic PZT-5H
and elastic BaTiO3, respectively
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Fig. 4 Scattering cross-section κ as a function
of θ, the materials of matrices and inclu-
sion in this case are elastic PZT-5H and
elastic BaTiO3 rigidity, respectively
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Fig. 5 Scattering cross-section κ as a func-
tion of θ, the materials of matrices
and inclusion in this case are PZT-
5H and BaTiO3, respectively
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Fig. 6 Scattering cross-section κ as a func-
tion of θ, the materials of matrices
and inclusion in this case are PZT-
5H and BaTiO3 rigidity, respectively
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Appendix A

Consider function f(x) defined in R2. The Radon transform of f(x) is defined as

f̂(s,n) = R[f(x)] =

Z
f(x)δ(s − n · x)dx, (A1)

where n is a unite vector, and δ is the two-dimensional Dirac delta. The Radon transform integral
f(x) over all curves is defined by n · x = s. The inverse Radon transform is defined as

f(x) = − i

4π

I
|n|=1

Hs

»
d

ds
f̂(s, n)|s=n·x

–
dl(n), (A2)

where Hs is the Hilbert transform with respect to s defined as

Hs[f(s, n)] =
i

π

Z ∞

−∞

f(τ, n)

s − τ
dτ. (A3)

Helgason[12] provided detailed description of the properties of the Radon transform.

Appendix B

Using the techniques performed by Li and Wang[13], Eqs. (72)–(74) are solved as below:

N∞
ijq =

1

4π2

3X
m=1

I
|n|=1

EqmEmjni

ρc2
m(n · x)

dl(n) =
1

2π2

Z ∞

−∞

Aqj(e1 + ζe2)ζi

D(e1 + ζe2)(x1 + ζx2)
dζ, (B1)
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where x = x1e1 + x2e2 and [ζ1, ζ2] = [1, ζ]. The integration of Eq. (B1) with respect to dx′ has been
done by Eshelby[8], which is proved to be linearly dependent on x. Therefore, we arrive at the conclusion

that
d[

R
S N∞

ijq(x−x′)dx′]
dxl

are constants, which are given by

Z
S

(N∞
x )ijqldx′ =

1

πε

Z ∞

−∞

Aqj(e1 + ζe2)ζil

D(e1 + ζe2)(1/ε2 + ζ2)
dζ, (B2)

where [ζil] =

»
1 ζ
ζ ζ2

–T

and ε = b/a, with a and b denoting the axis lengths of the elliptic inclusion

in the directions of e1 and e2, respectively. In the derivation of Eq. (B2), some complicated terms
are omitted for that according to Eq. (67), only imaginary parts of τiJ v̄J,i contribute to the scattering
section. For the most general cases where the roots for D(e1 + ζe2) = 0 are all distinct, Eq. (B2) can
be solved explicitly as

Z
S

(N∞
x )ijqldx′ = −2

ε
Im

"
6X

m=1

Aqj(ζm)(ζil)m

a6(ζm − ζ∗
m)

6Q
k=1
k �=m

(ζm − ζ∗
k)(ζm − ζk)

#
, (B3)

where a6 is the coefficient of the term ζ10 in D(e1 + ζe2), ζm (m = 1, 2, · · · , 5) are the roots of
D(e1 + ζe2) = 0 with positive imaginary parts, ζ6 equals i(1/ε), and ζ∗

m is the conjugate of ζm. Other
terms can be obtained in the same way as

Z
S

(N∞
x )i4qldx′ = −2

ε
Im

(
8X

m=1

Aqj(ζm)(ζil)m[Lj4(ζm)L55(ζm) − L54(ζm)Lj5(ζm)]

a6a4(ζm − ζ∗
m)

8Q
k=1
k �=m

(ζm − ζ∗
k)(ζm − ζk)

)
, (B4)

where a4 is the coefficient of the term ζ4 in L45L54−L44L55; ζ7 and ζ8 are roots with positive imaginary
parts of the equation (L45L54 − L44L55) = 0.

Z
S

(N∞
x )i5qldx′ = −2

ε
Im

(
8X

m=1

Aqj(ζm)(ζil)m[L45(ζm)Lj4(ζm) − L44(ζm)Lj5(ζm)]

a6(−a4)(ζm − ζ∗
m)

8Q
k=1
k �=m

(ζm − ζ∗
k)(ζm − ζk)

)
. (B5)

The other equations are of the similar form and too lengthy to be presented here.

Appendix C

From Eq. (67), we learn that only the imaginary and even terms in Eqs. (59a)–(59f) make contri-
bution to the scattering cross-section. Therefore,

(ΔNx)ijql =
1

4w3π2

3X
m=1

I
|n|=1

EqmEjmninl

2ρc2
m

·
»Z ∞

−n·x

k2
meikm(n·x+τ)

τ
dτ −

Z −n·x

−∞

k2
me−ikm(n·x+τ)

τ
dτ

–
dl(n). (C1)

Here, km and |x| are assumed to be very small numbers, which facilitates the following transformation:

(ΔNx)ijql =
1

4w3π2

3X
m=1

I
|n|=1

iEqmEjmninl

ρc2
m

Z ∞

0

k2
m sin(kmτ )

τ
dτdl(n). (C2)
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Because Z ∞

0

sin(kmτ )

τ
dτ = (

Z 1

0

+

Z ∞

1

)
sin(kmτ )

τ
dτ

= km

∞X
i=0

(−1)i 1

(2i + 1)(2i + 1)!
−

Z ∞

1

1

kmτ
d cos(kmτ )

= km

∞X
i=0

(−1)i 1

(2i + 1)(2i + 1)!
+

cos km − 1

km

= km

h ∞X
i=0

(−1)i 1

(2i + 1)(2i + 1)!
− 1

2

i
, (C3)

we finally arrive at the conclusion:

(ΔNx)ijql =
1

4π2

3X
m=1

I
|n|=1

EqmEjmninl

ρc5
m

" ∞X
i=0

(−1)i 1

(2i + 1)(2i + 1)!
− 1

2

#
dl(n). (C4)

The other equations are obtained in exactly the same way.


